Ketigatitik sudut segitiga ABC digeser ke kiri sepanjang 2 satuan dan digeser ke atas sejauh 1 satuan sehingga diperoleh bayangan ketiga titik tersebut berturut-turut A', B', dan C'. Jadi, bayangan segitiga ABC oleh translasi ini adalah segitiga A'B'C'.
Bayangantitik P(-1, -4) karena translasi T adalah P'(3, 2) tentukan bayangan titik Q(1, 2) karena translasi T Halo Brigita, jawaban untuk soal di atas adalah Q'(5,8) Translasi adalah transformasi yang memindahkan objek pada bidang datar dengan arah dan jarak tertentu. Jika titik A(x,y) ditranslasikan oleh T(a,b) maka bayangannya adalah A
1- 50. 51 - 59. 5 dengan faktor skala k = 3 pada pusat P (2, -1) Modul Transformasi Geometri 43 E. Komposisi Transformasi Geometri Konsep komposisi transformasi sama halnya dengan komposisi fungsi pada umumnya yang telah dipelajari sebelumnya di kelas X. Sekarang, bagaimana jika fungsinya berupa transformasi geometri seperti translasi
Vay Nhanh Fast Money. Hai Quipperian, sebelum berangkat sekolah, pasti kamu bercermin dulu kan? Tahukah kamu jika pada cermin berlaku peristiwa refleksi atau pemantulan, lho. Jarak antara bayangan dan cermin pasti akan sama dengan jarakmu dan cermin. Tidak percaya, cobalah untuk menjauh dari cermin, pasti bayangan yang terlihat akan semakin kecil. Nah, di dalam Matematika, peristiwa refleksi ini termasuk salah satu transformasi geometri. Lalu, apa yang dimaksud transformasi geometri? Daripada penasaran, yuk simak selengkapnya! Pengertian Transformasi Geometri Transformasi berarti perubahan dan geometri berkaitan dengan suatu bangun, garis, titik, dan pengukurannya. Transformasi geometri adalah perubahan posisi dan ukuran suatu benda atau objek pada bidang geometri seperti garis, titik, maupun kurva. Oleh karena berkaitan dengan garis dan titik, maka transformasi geometri ini bisa dituliskan dalam bentuk koordinat Cartesius maupun matriks. Contoh transformasi geometri dalam kehidupan sehari-hari adalah saat kamu bercermin dan bayanganmu terlihat jelas pada cermin tersebut. Jenis-Jenis Transformasi Geometri Transformasi geometri dibagi menjadi empat jenis, yaitu translasi, refleksi, rotasi, dan dilatasi. Apa perbedaan keempat jenis transformasi tersebut? Berikut ini ulasannya! Translasi Translasi adalah perpindahan posisi suatu objek. Jika dinyatakan dalam koordinat Cartesius, translasi merupakan perpindahan titik-titik koordinat suatu objek ke arah dan jarak tertentu. Pada peristiwa translasi ini, ukuran objek tidak mengalami perubahan ya. Persamaan umum translasi Jika titik P yang memiliki koordinat x, y ditranslasikan sejauh a, b, akan dihasilkan titik Pβ dengan koordinat xβ, yβ. Secara matematis, koordinat akhir pada proses translasi dinyatakan sebagai berikut. Dengan Px, y = koordinat titik awalnya; a = pergeseran pada sumbu-x; b = pergeseran pada sumbu-y; dan Px+a, y+b = koordinat akhir setelah pergeseran. Contoh translasi Jika pergeseran mengarah ke sumbu-x positif atau sumbu-y positif, maka pergeserannya bertanda positif. Sebaliknya, jika pergeserannya mengarah ke sumbu-x negatif atau sumbu-x negatif, maka pergeserannya bertanda negatif. Adapun contoh translasi bisa kamu lihat pada gambar berikut. Gambar di atas menunjukkan bahwa suatu bangun persegi ABCD mengalami translasi atau pergeseran hingga berada di posisi persegi AβBβCβDβ. Lalu, berapakah pergeseran atau perpindahan bangunnya? Untuk tahu jumlah pergeserannya, coba hitung jarak satuan antara bangun ABCD dan AβBβCβD ke arah sumbu-x dan sumbu-y. Dari hasil pengamatan, diperoleh bahwa bangun persegi ABCD bergeser 5 satuan ke arah sumbu-x positif a = 5 dan 5 satuan ke arah sumbu-y negatif b = -5. Setelah tahu pergeserannya, tentukan dahulu koordinat awal setiap titik pada persegi seperti berikut. Koordinat A = -3,4 Koordinat B = -1, 4 Koordinat C = -3, 2 Koordinat D = -1, 2 Terakhir, tentukan koordinat akhir persegi tersebut menggunakan persamaan translasi. Koordinat akhir bangun persegi AβBβCβDβ. Ternyata, diperoleh koordinat akhir yang sama kan dengan gambar? Sebenarnya, kamu bisa langsung mengetahui koordinat akhir melalui gambarnya. Namun, pada kesempatan ini Quipper Blog ingin menunjukkan aplikasi persamaan translasi pada soal. Nah, jika kamu menjumpai soal-soal translasi, gunakan persamaan tersebut untuk menentukan titik koordinat akhir suatu objek. Refleksi Refleksi atau pencerminan adalah perpindahan titik suatu objek pada bidang sesuai dengan sifat pembentukan bayangan pada cermin datar. Pada prinsipnya, refleksi hampir sama dengan translasi, yaitu pergeseran. Hanya saja, pada refleksi memiliki sifat-sifat tertentu sedemikian sehingga posisi akhir objeknya merupakan hasil pencerminan objek awalnya. Sifat-sifat refleksi Oleh karena pembentukan bayangan pada refleksi sama dengan pembentukan bayangan cermin, maka sifat-sifatnya pun juga sama dengan sifat-sifat bayangan cermin. Adapun sifat-sifat refleksi atau pencerminan adalah sebagai berikut. Jarak antara titik awal objek ke cermin sama dengan jarak titik akhir objek ke cermin. Garis penghubung antara objek awal dan akhirnya selalu tegak lurus cermin. Jika dicerminkan terhadap sumbu-x, maka garis penghubungnya tegak lurus terhadap sumbu-x. Jika dicerminkan terhadap sumbu-y, garis penghubungnya juga tegak lurus terhadap sumbu-y. Sumbu-x atau sumbu-y dianalogikan sebagai cermin atau pusat refleksi. Persamaan umum refleksi Refleksi bisa dilakukan terhadap sumbu-x maupun sumbu-y. Pada refleksi ini, sumbu-x atau sumbu-y bisa dianalogikan sebagai cermin. Persamaan umum refleksi dinyatakan sebagai berikut. Refleksi terhadap sumbu-x Jika direfleksikan terhadap sumbu-x, maka koordinat yβ merupakan lawan dari koordinat y dengan koordinat x tetap. Secara matematis, dinyatakan sebagai berikut. Dengan Px, y = titik koordinat awal Pβx, -y = titik koordinat akhir Mx = matriks pencerminan terhadap sumbu-x Refleksi terhadap sumbu-y Jika direfleksikan terhadap sumbu-y, maka koordinat xβ merupakan lawan dari koordinat x dengan koordinat y tetap. Secara matematis, dinyatakan sebagai berikut. Dengan Px, y = titik koordinat awal Pβ-x, y = titik koordinat akhir My = matriks pencerminan terhadap sumbu-y Selain direfleksikan terhadap sumbu-x dan sumbu-y, suatu objek juga bisa direfleksikan terhadap garis, meliputi refleksi terhadap garis y = x, garis y = -x, garis x = h, dan garis y = k. Berikut ini pembahasannya. Refleksi terhadap garis y = x Jika suatu titik P dengan koordinat x, y direfleksikan terhadap garis y = x akan dihasilkan koordinat Pβ y, x. Perhatikan gambar berikut. Refleksi terhadap garis y = -x Jika suatu titik P dengan koordinat x, y direfleksikan terhadap garis y = -x akan dihasilkan koordinat Pβ -y, -x. Adapun contoh refleksi terhadap garis y = -x bisa kamu lihat pada contoh berikut. Refleksi terhadap garis x = h Jika titik P dengan koordinat x, y direfleksikan terhadap garis x = h akan dihasilkan koordinat Pβ 2h β x, y. Perhatikan gambar berikut. Refleksi terhadap garis y = k Refleksi titik P x, y terhadap garis y = x akan menghasilkan koordinat Pβ x, 2k β y. Perhatikan gambar refleksi berikut. Contoh refleksi Berikut ini merupakan contoh segitiga siku-siku ABC yang direfleksikan terhadap sumbu-y. Artinya, sumbu-y dianggap sebagai cermin atau pusat refleksinya. Jika dicerminkan terhadap sumbu-y, maka koordinat x, y menjadi -x, y. Untuk membuktikannya, gunakan persamaan refleksi seperti berikut. Koordinat titik A = -4, 4 Koordinat titik B = -4, 1 Koordinat titik C = -2, 1 Hasil yang diperoleh dari persamaan di atas sesuai dengan hasil pencerminan pada koordinat Cartesius, kan? Rotasi Rotasi identik dengan perputaran suatu benda. Sebenarnya, apa rotasi dalam Matematika itu? Rotasi adalah perpindahan titik-titik suatu objek pada bidang geometri dengan cara memutarnya sejauh sudut Ξ±. Oleh karena rotasi termasuk perpindahan, maka arah rotasi mempengaruhi tanda sudutnya. Jika arah rotasi searah dengan putaran jarum jam, maka sudutnya bertanda negatif. Sementara itu, jika arah rotasi berlawanan dengan arah putaran jarum jam, maka sudutnya bertanda negatif. Secara matematis, rotasi dilambanganya sebagai RP, Ξ±, dengan P = pusat rotasi dan Ξ± = besarnya sudut rotasi. Secara umum, rotasi dibagi menjadi dua, yaitu sebagai berikut. Rotasi terhadap titik pusat 0, 0 Rotasi terhadap titik pusat 0, 0 bisa kamu lihat pada contoh berikut. Gambar di atas menunjukkan bahwa titik K dirotasi sejauh Ξ± melalui titik pusat 0, 0, hingga berada di posisi Kβ. Secara matematis, persamaan rotasi yang melalui titik pusat dinyatakan sebagai berikut. Untuk memudahkanmu dalam menentukan titik bayangan objek yang dirotasi terhadap pusat 0,0, gunakan persamaan matriks berikut. Untuk lebih jelasnya, simak contoh berikut. Jika titik M berada di koordinat 4, -2, lalu titik tersebut dirotasi berlawanan dengan arah putaran jarum jam sejauh 90o terhadap titik pusat 0, 0, tentukan letak bayangannya! Pembahasan Titik M dirotasi sejauh 90o berlawanan dengan arah putaran jarum jam terhadap titik pusat 0, 0. Secara matematis, bisa dinyatakan sebagai berikut. Tugas Quipperian adalah menentukan koordinat xβ, yβ. Koordinat bayangannya bisa kamu tentukan dengan persamaan berikut. Jadi koordinat Mβ = 2, 4. Rotasi terhadap titik pusat a, b Rotasi tidak harus berpusat di titik 0, 0. Berikut ini merupakan contoh titik yang dirotasi dengan pusat a, b. Gambar di atas menunjukkan bahwa titik K dirotasi sejauh Ξ± melalui titik pusat 2, 1, hingga berada di posisi Kβ. Secara matematis, persamaan rotasi yang melalui titik pusat a, b dinyatakan sebagai berikut. Untuk memudahkanmu dalam menentukan titik bayangan objek yang dirotasi terhadap pusat a, b, gunakan persamaan matriks berikut. Dilatasi Dilatasi adalah perpindahan titik-titik suatu objek terhadap titik tertentu berdasarkan faktor pengali. Oleh karena ada faktor pengali, maka peristiwa dilatasi ini bisa mengakibatkan perubahan ukuran objek, misalnya diperbesar, diperkecil, atau tetap. Adapun hubungan antara faktor pengali dan ukuran benda adalah sebagai berikut. Faktor pengali k > 1 akan mengakibatkan ukuran objek diperbesar dan searah dengan sudut dilatasi objek awalnya. Faktor pengali k = 1 tidak mengakibatkan perubahan ukuran atau posisi objek. Faktor pengali 0 < k < 1 mengakibatkan ukuran objek diperkecil dan searah dengan sudut dilatasi awalnya. Faktor pengali -1 < k < 0 mengakibatkan ukuran objek diperkecil dan berlawanan dengan sudut dilatasi awalnya. Faktor pengali k = -1 tidak mengakibatkan perubahan ukuran objek, namun arahnya berlawanan dengan sudut dilatasi awalnya. Faktor pengali k < β 1 mengakibatkan ukuran objek diperbesar dan berlawanan dengan sudut dilatasi awalnya. Secara umum, dilatasi dibagi menjadi dua, yaitu sebagai berikut. Dilatasi terhadap titik pusat 0, 0 Jika suatu titik M x, y mengalami dilatasi terhadap titik pusat 0, 0 dengan faktor pengali k, maka akan dihasilkan koordinat Mβ xβ. yβ. Secara matematis, bisa dinyatakan sebagai berikut. Titik koordinat Mβxβ, yβ bisa ditentukan dengan rumus berikut. Contoh dilatasi terhadap titik pusat 0, 0 adalah sebagai berikut. Diketahui gambar persegi ABCD pada koordinat Cartesius seperti berikut. Jika bangun tersebut didilatasi terhadap titik pusat 0,0 dan faktor pengali -2, tentukan hasil bayangannya! Pembahasan Mula-mula, tentukan dahulu koordinat akhir setiap titik pada bangun setelah didilatasi. Titik Aβ β A 1, 2 Dengan demikian, Aβ -2, -4. Titik Bβ β B 2, 2 Dengan demikian, Bβ -4, -4. Titik Cβ β C 1, 1 Dengan demikian, Cβ -2, -2. Titik Dβ β D 2, 1 Dengan demikian, Dβ -4, -2 Jika digambarkan pada koordinat Cartesius, menjadi seperti berikut. Di soal tertulis bahwa faktor pengalinya = -2. Artinya, ukuran objek akan semakin besar dan arahnya berlawanan dengan sudut dilatasi awalnya. Bagaimana tahu jika arahnya berlawanan? Coba perhatikan kembali letak titik Aβ, Bβ, Cβ, dan Dβ. Letak keempat titik itu berlawanan dengan letak titik awalnya, yaitu A, B, C, dan D. Dilatasi terhadap titik pusat a, b Jika dilatasi titik koordinat M x, y dilakukan terhadap titik pusat a, b dengan faktor pengali k, maka akan dihasilkan koordinat Mβ xβ. yβ. Secara matematis, bisa dinyatakan sebagai berikut. Titik koordinat Mβxβ, yβ bisa ditentukan dengan rumus berikut. Ukuran dan bentuk objek setelah didilatasi bergantung sepenuhnya pada faktor pengali, ya. Contoh Soal Transformasi Geometri Untuk mengasah pemahamanmu, yuk simak contoh soal berikut. Contoh Soal 1 Jika titik G 2, 5 dicerminkan terhadap garis y = -x, tentukan letak bayangan titik G! Pembahasan Secara matematis, pencerminan titik G bisa dinyatakan sebagai berikut. Untuk menentukan koordinat Gβ, gunakan persamaan berikut. Jadi, koordinat Gβ = -5, -2. Contoh Soal 2 Diketahui gambar titik H seperti berikut. Jika titik H dirotasikan sejauh 180o terhadap titik pusat 0, 0, gambarkan posisi akhir titik Hβ! Pembahasan Berdasarkan gambar pada soal, titik H berada di koordinat 1, 3. Dengan demikian Tugas Quipperian adalah menentukan koordinat xβ, yβ. Koordinat bayangannya bisa kamu tentukan dengan persamaan berikut. Diperoleh letak koordinat titik Hβ -1, -3. Jika digambarkan, menjadi seperti berikut. Contoh Soal 3 Titik B 2, -1 didilatasi terhadap pusat 4, 2. Jika faktor pengalinya 2, tentukan koordinat akhir titik B! Pembahasan Secara matematis, titik B dinyatakan sebagai berikut. Titik koordinat Bβxβ, yβ bisa ditentukan dengan rumus berikut. Jadi, koordinat Bβ = 0, -4 Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper!
MatematikaGEOMETRI Kelas 11 SMATransformasiTransformasi dengan MatrixTransformasi dengan MatrixTransformasiGEOMETRIMatematikaRekomendasi video solusi lainnya0035Matriks yang bersesuaian dengan refleksi terhadap garis y...0342Pada pemetaan Ax, y->A'y, -x, matriks transformasi ya...0205Bayangan titik 1,-3 jika ditransformasikan oleh matriks...0355Sebuah garis 3x+2y=6 ditranslasikan dengan matriks 3 -4...Teks videoJika melihat soal seperti ini maka cara mengerjakannya kita akan menggunakan konsep transformasi pada matriks dan juga perkalian matriks A jika kita punya matriks A B C kemudian D X dengan matriks efgh Maka hasilnya adalah matriks A ditambah b g a + b h c ditambah d y c ditambah d. H kita punya titik p x koma y ditransformasikan oleh matriks ini kemudian ditransformasikan oleh matriks ini maka kita punya teh satu yaitu Min 100 1 T 2 nya yaitu 1 Min 110 maka p nya adalah dari belakang dulu ya yaitu T2 komposisi teh keduanya adalah 1 Min 110 dikali dengan T1 yaitu Min 1001 = hasilnya adalahsatu yaitu min 1 ditambah 0,0 dikurangi 11 + 00 + 0 adalah min 1 min 1 min 1 maka bayangan titik p yaitu X aksen y aksen adalah min 1 min 1 Min 10 x dengan x y yaitu Min Y yang bawah akan menjadi min x ditambah 0 = min x min y min x jadi bayangan titik p nya adalah yang F ya karena tidak ada pilihan yaitu min x min y koma min x sampai jumpa di pertanyaan berikutnya
Hallo adik-adik.. ketemu lagi sama kakak... hari ini kita akan belajar tentang transformasi.. cekidot..Haii.. kalian juga bisa pelajari materi ini di chanel youtube ajar hitung lho.. yuk klik video di bawah ini jika kalian mau belajar lewat video 1. Persamaan bayangan garis y = 2x β 3 karena refleksi terhadap garis y = -x, dilanjutkan refleksi terhadap y = x adalah... a. y + 2x β 3 = 0 b. y β 2x β 3 = 0 c. 2y + x β 3 = 0 d. 2y β x β 3 = 0 e. 2y + x + 3 = 0 PEMBAHASAN Kalian catat rumusnya ya - Matriks refleksi terhadap garis y = x adalah - Matriks refleksi terhadap garis y = -x adalah Mari kita kerjakan soal di atas Pada soal di atas diketahui bahwa garis y = 2x β 3 di refleksikan terhadap garis y = -x, berarti T1 = dan dilanjutkan dengan refleksi terhadap y = x berarti T2 = Maka, transformasinya adalah Jadi, bayangan dari y = 2x β 3 adalah βy = -2x β 3 atau y β 2x - 3 = 0 JAWABAN B 2. Bayangan kurva y = x + 1 jika ditransformasikan oleh matriks , kemudian dilanjutkan oleh pencerminan terhadap sumbu x adalah ... a. x + y β 3 = 0 b. x β y β 3 = 0 c. x + y + 3 = 0 d. 3x + y + 1 = 0 e. x + 3y + 1 = 0 PEMBAHASAN Di stabillo nih rumusnya dik adik... - matriks pencerminan terhadap sumbu x adalah - Transformasi T1 lalu dilanjutkan transformasi T2 maka matriks transformasinya adalah T2 o T1 Yuks... kita kerjain Pada soal diketahui T1 = dan T2 adalah pencerminan terhadap sumbu x, berarti T2 = Sehingga matriks transformasinya Dari hasil transformasi di atas didapatkan xβ = x + 2y x = xβ β 2y dan yβ = -y y = -yβ Maka kurva y = x + 1 memiliki bayangan -yβ = xβ - 2y + 1 -yβ = xβ - 2y + 1 -yβ = xβ - 2-yβ + 1 -yβ = xβ + 2yβ + 1 xβ + 3yβ + 1 = 0 atau x + 3y + 1 = 0 JAWABAN E 3. Jika transformasi T1, memetakan x, y ke -y, x dan transformasi T2 menyatakan x, y ke -y, -x dan jika transformasi T merupakan transformasi T1 yang diikuti oleh transformasi T2, maka matriks T adalah ... PEMBAHASAN Yuks dicatat rumusnya dik adik Rotasi +900 yang berpusat di titik O0, 0 memiliki matriks - T1 merupakan rotasi +900 dengan pusat O0,0 maka matriksnya adalah - T2 merupakan pencerminan y = -x, maka matriksnya JAWABAN C 4. Bayangan kurva y = 3x β 9x2 jika di rotasi dengan pusat O 0, 0 sejauh 900dilanjutkan dengan dilatasi dengan pusat O 0, 0 dan faktor skala 3 adalah ... a. x = 3y2 β 3y b. x = y2 + 3y c. x = y2 + 3y d. y = 3x2 β 3x e. y = x2 + 3y PEMBAHASAN Rumusnya boleh lho dicatat dibuku kalian dek - Rotasi dengan pusat O0, 0 sejauh 900 memiliki matriks - Dilatasi dengan pusat O0, 0 dan faktor skala 3 memiliki matriks T1 = dan T2 = T2 o T1 = Maka matriks transformasinya adalah Dari matriks transformasi di atas didapatkan xβ = -3y, maka y = -1/3 xβ dan yβ = 3x, maka x = 1/3yβ Jadi, bayangan kurva y = 3x β 9x2 menjadi y = 3x β 9x2 -1/3xβ = 31/3yβ β 91/3yβ2 -1/3xβ = yβ - yβ2hasil perkalian 3 -xβ = 3yβ β 3yβ2xβ = 3y2 β 3yβ hasil perkalian - Jadi, bayangannya adalah x = 3y2 β 3y JAWABAN A 5. Transformasi T berupa rotasi yang disusul dengan pencerminan terhadap garis y = x. Jika rotasi itu berupa rotasi sebesar 90^0 terhadap pusat koordinat dalam arah transformasi dapat ditulis sebagai... PEMBAHASAN Yuk diingat lagi rumusnya... Pada soal di atas T1 adalah rotasi 900dengan pusat O 0, 0, makanya matriksnya Sedangkan T2 adalah pencerminan terhadap garis y = x, makanya memiliki matriks T2 o T1 = JAWABAN B 6. Persamaan bayangan garis 2y β 5x β 10 = 0 oleh rotasi 0, 900 dilanjutkan refleksi terhadap garis y = -x adalah ... a. 5y + 2x + 10 = 0 b. 5y β 2x β 10 = 0 c. 2y + 5x +10 = 0 d. 2y + 5x β 10 = 0 e. 2y β 5x + 10 = 0 PEMBAHASAN T1 adalah rotasi dengan pusat O 0, 0, memiliki matriks T2 adalah refleksi terhadap garis y = -x, memiliki matriks T2 o T1 = Maka Dari transformasi di atas, didapatkan xβ = -x, sehingga x = -xβ yβ = y, sehingga y = yβ Jadi, bayangan garis 2y β 5x β 10 = 0 adalah 2y β 5x β 10 = 0 2yβ β 5-xβ β 10 = 0 2yβ + 5xβ β 10 = 0 atau 2y + 5x β 10 = 0 JAWABAN D 7. Diketahui translasi Titik-titik Aβ dan Bβ berturut-turut adalah bayangan titik-titik A dan B oleh komposisi transformasi T1 o T2. Jika A-1, 2, Aβ1, 11, dan Bβ12, 13 maka koordinat titik B adalah... a. 9, 4 b. 10, 4 c. 14, 4 d. 10, -4 e. 14, -4 PEMBAHASAN Titik A-1, 2 memiliki bayangan Aβ1, 11 maka 2 + a = 1 a = -1 dan 4 + b = 11 b = 7 Titik Bx, y memiliki bayangan Bβ12, 13, maka x = 10 dan y + 9 = 13 y = 4 Jadi, koordinat titik B adalah 10, 4 JAWABAN B 8. Elips dengan persamaan kemudian diputar 900 dengan pusat -1, 2. Persamaan bayangan elips tersebut adalah ... PEMBAHASAN Matriks rotasi 900 adalah x, y digeser sejauh didapatkan Sehingga didapatkan xβ = x β 1 dan yβ = y + 2 Bayangan x dan y diputar 90 derajat dengan pusat -1, 2, maka Sehingga didapatkan xββ + 1 = -yβ + 2 xββ + 1 = -y + 2 + 2 xββ + 1 = -y y = -xββ β 1 = -xββ + 1 dan yββ β 2 = xβ + 1 yββ β 2 = x β 1 + 1 yββ β 2 = x x = yββ β 2 Sehingga bayangan dari elips 4x2 + 9y2 = 36 adalah JAWABAN D 9. Titik Px, y ditransformasikan oleh matriks . Bayangannya ditransformasikan oleh matriks . Bayangan titik P adalah ... a. -x, -y b. -x, y c. x, -y d. -y, x e. -y, -x PEMBAHASAN Pada soal diketahui T1 = T2 = Maka transformasi matriksnya Jadi, bayangan titik Px, y adalah Sehingga didapatkan xβ = -y, maka y = -xβ yβ = -x, maka x = -yβ Jadi, bayangannya Pβ-yβ, -xβ JAWABAN E 10. T1 adalah transformasi yang bersesuaian dengan matriks dan T2 adalah transformasi yang bersesuaian dengan matriks . Bayangan Am, n oleh transformasi T1 o T2 adalah Aβ-9, 7. Nilai m + n adalah ... a. 4 b. 5 c. 6 d. 7 e. 8 PEMBAHASAN Karena bayangan Aβ-9, 7, maka Sehingga didapatkan persamaan -x β 3y = -9 .... i, dan -5x + 11y = 7 ... ii Kita eliminasi i dan ii yuks Subtitusikan y = 2, dalam persamaan βx β 3y = -9 -x β 3y = -9 -x β 32 = -9 -x β 6 = -9 x = 3 Karena titik Am, n = 3, 2, maka nilai m + n = 3 + 2 = 5 JAWABAN B 11. Oleh matriks A = titik P1,2 dan titik Q masing-masing ditransformasikan ke titik Pβ2, 3 dan Qβ2, 0. Koordinat titik Q adalah ...a. 1, -1b. -1, 1c. 1, 1d. 2, -1e. 1, 0PEMBAHASANOleh matriks A = titik P1,2 memiliki bayangan Pβ2, 3, makaSehingga diperoleh3a + 2 = 23a = 0a = 0Karena a = 0, maka matriks A menjadi Titik Q ditransformasikan oleh matriks A, didapatkan bayangan Qβ2, 0, maka titik Q adalahSehingga kita dapatkan2x = 2x = 1dan x + y = 01 + y = 0y = -1Maka titik Q adalah 1, -1JAWABAN A 12. Garis yang persamaannya x β 2y + 3 = 0 ditransformasikan dengan transformasi yang berkaitan dengan matriks . Persamaan bayangan garis itu adalah ...a. 3x + 2y β 3 = 0b. 3x - 2y β 3 = 0c. 3x + 2y + 3 = 0d. -x + y + 3 = 0e. x - y + 3 = 0PEMBAHASANYuks kita cari dulu sembarang titik yang melalui garis x β 2y + 3 = 0Misalkan x = 1, maka 1 β 2y + 3 = 0 ==> -2y = -4, ==> y = 2 maka titiknya 1, 2Misalkan x = 3, maka 3 β 2y + 3 = 0, ==> -2y = -6 ==> y = 3 maka titiknya 3, 3Selanjutnya kita cari bayangan titik A1, 2Bayangan titik A1, 2 adalah Aβ-5, -8Selanjutnya bayangan titik B3, 3Bayangan titik B3, 3 adalah Bβ-6, -9Selanjutnya kita cari persamaan garis bayangannya, yaitu garis yang melalui titik Aβ-5, -8 dan Bβ-6, -9.Masih ingatkah kalian rumus mencari persamaan garis yang melalui 2 titik? Yuk untuk mengingatkannya kalian boleh lihat disini -y β 8 = -x β 5x β y = -5 + 8x β y = 3ataux β y β 3 = 0atau-x + y + 3 = 0JAWABAN D 13. Bayangan titik Ax, y karena refleksi terhadap garis x = -2 dilanjutkan refleksi terhadap garis y = 3, dan rotasi terhadap pusat O dengan sudut phi/2 radian adalah -4, 6. Koordinat titik A adalah ...a. 2, -10b. 2, 10c. 10, 2d. -10, 2e. 10, 2PEMBAHASANMaka-6 β y = -4y = -4 + 6y = 2dan-4 β x = 6x = -10Maka koordinat bayangan A adalah -10, 2JAWABAN D 14. Ditentukan matriks transformasi . Hasil transformasi titik 2, -1 terhadap T1 dilanjutkan T2 adalah ...a. -4, 3b. -3, 4c. 3, 4d. 4, 3e. 3, -4PEMBAHASANJadi, bayangan titik 2, -1 adalahBayangan dari titik itu adalah titik -4, 3JAWABAN A 15. Sebuah lingkaran dengan pusat P3, 2 dan jari-jari 5 dirotasikan R0, 90^0 kemudian dicerminkan terhadap sumbu x. Persamaan bayangannya adalah...a. x2 + y2 + 4x + 6y β 12 = 0b. x2 + y2 - 4x - 6y β 12 = 0c. x2 + y2 - 4x + 6y β 12 = 0d. x2 + y2 + 6x + 4y β 12 = 0e. x2 + y2 + 6x - 4y β 12 = 0PEMBAHASANDalam hal ini, lingkaran jika dirotasi atau dicerminkan tidak akan mengubah panjang persamaan lingkaran berjari-jari 5 tidak berubah dan memiliki titik pusat -2, -3 adalahIngat rumusnya ya dik adikJAWABAN A 16. Garis dengan persamaan 2x + y + 4 = 0 dicerminkan terhadap garis y = x dilanjutkan dengan transformasi yang bersesuaian dengan matriks . Persamaan bayangannya adalah ...a. x β 2y + 4 = 0b. x + 2y + 4 = 0c. x + 4y + 4 = 0d. y + 4 = 0e. x + 4 = 0PEMBAHASANDari soal kita ketahu bahwa T1 adalah pencerminan terhadap garis y = x, memiliki matriks dan T2 adalah , maka matriks tansformasinya adalahKita cari bayangan x dan y dulu yaSehingga kita dapatkanxβ = 2x + y dan yβ = xBayangan garis 2x + y + 4 = 0 adalah2x + y + 4 = 0xβ + 4 = 0 atau x + 4 = 0JAWABAN E 17. Titik Ax, 12 ditranslasikan secara berurutan oleh T1 = -3, 7, T2 = 2, 3 dan T3 = 4, -1 sehingga menghasilkan bayangan Aβ8, y. Nilai-nilai x dan y adalah ...a. -5 dan 21b. 5 dan -21c. 5 dan 21d. -21 dan 5e. -21 dan -5PEMBAHASANKita perolehx + 3 = 8x = 5Dan y = 21JAWABAN C 18. Garis dengan persamaan y = 2x + 3 dicerminkan terhadap sumbu x kemudian diputar dengan R 0, 900. Persamaan bayangannya adalah...a. x β 2y β 3 = 0b. x + 2y β 3 = 0c. 2x β y β 3 = 0d. 2x + y β 3 = 0e. 2x + y + 3 = 0PEMBAHASANT1 adalah pencerminan terhadap sumbu x, memiliki matriks dan T2 adalah rotasi 90 derajat, memiliki matriks . MakaSehingga bayangan x dan y nya adalahKita peroleh xβ = y atau y = xβdanyβ = x atau x = yβSehingga bayangan dari persamaan y = 2x + 3 adalahy = 2x + 3xβ = 2yβ + 32yβ - xβ + 3 = 0ataux β 2y β 3 = 0JAWABAN A 19. Persamaan peta garis x β 2y + 4 = 0 yang dirotasikan dengan pusat O0, 0 sejauh +900, dilanjutkan dengan pencerminan terhadap garis y = x adalah ...a. x + 2y + 4 = 0b. x + 2y - 4 = 0c. 2x + y + 4 = 0d. 2x - y - 4 = 0e. 2x + y - 4 = 0PEMBAHASANT1 adalah rotasi dengan pusat O0, 0 sejauh +900, sehingga memiliki matriks dan T2 pencerminan terhadap garis y = x, sehingga memiliki matriks Selanjutnya kita cari bayangan x dan yKita dapatkan xβ = x dan yβ = -yJadi, bayangan x β 2y + 4 = 0 adalahx β 2y + 4 = 0xβ β 2-yβ + 4 = 0xβ + 2yβ + 4 = 0ataux + 2y + 4 = 0JAWABAN A 20. Bayangan kurva y = sin x oleh refleksi terhadap sumbu x dilanjutkan dengan dilatasi berpusat di O0, 0 dan faktor skala Β½ adalah kurva ...a. sin 2xb. y = Β½ sin xc. y = sin x cos xd. y = -sin x cos xe. y = -sin 2xPEMBAHASANJadi, bayangan x dan y adalahxβ = Β½ x, sehingga x = 2xβyβ = - Β½ y sehingga y = -2yβMaka bayangan dari y = sinx adalah-2yβ = sin 2xβyβ = - Β½ sin 2xyβ = - Β½ xβ . cos xβyβ = - sinxβ.cosxβatauy = -sinx . cosxJAWABAN D 21. Jika titik a, b dicerminkan terhadap sumbu y kemudian dilanjutkan dengan transformasi sesuai dengan matriks menghasilkan titik 1, -8 maka nilai a + b = ...a. -3b. -2c. -1d. 1e. 2PEMBAHASANT1 adalah pencerminan terhadap sumbu y, sehingga memiliki matriks dan T2 = Selanjutnya kita cari a dan bSehingga kita peroleh2a + b = 1 dan,-a + 2b = -8Yuk kita eliminasikan kedua persamaan di atas untuk mencari nilai a dan bSubtitusikan a = 2, dalam persamaan 2a + b = 12a + b = 122 + b = 14 + b = 1b = 1 β 4b = -3Maka, nilai a + b = 2 + -3 = -1JAWABAN C 22. Matriks transformasi yang mewakili pencerminan terhadap sumbu x dilanjutkan dengan rotasi 900 berlawanan arah jarum jam dengan pusat O adalah ...PEMBAHASANT1 adalah pencerminan terhadap sumbu x, sehingga memiliki matriks dan T2 adalah rotasi 90 derajat berlawanan arah jarum jam, sehingga memiliki matriks JAWABAN C Sekian dulu belajar transformasi bersama kakak... Ingat pesan kakakya, kita ga tau akan jadi seperti apa di masa depan. Yang bisa kita lakukan adalah berusaha melakukan yang terbaik di saat ini...
bayangan titik p 1 1 karena transformasi